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In this paper, we present the development of a sharp numerical scheme for multiphase
electrohydrodynamic (EHD) flows for a high electric Reynolds number regime. The electric
potential Poisson equation contains EHD interface boundary conditions, which are imple-
mented using the ghost fluid method (GFM). The GFM is also used to solve the pressure
Poisson equation. The methods detailed here are integrated with state-of-the-art interface
transport techniques and coupled to a robust, high order fully conservative finite difference
Navier–Stokes solver. Test cases with exact or approximate analytic solutions are used to
assess the robustness and accuracy of the EHD numerical scheme. The method is then
applied to simulate a charged liquid kerosene jet.

Published by Elsevier Inc.
1. Introduction

Electrohydrodynamics (EHD) is an interdisciplinary topic that describes the complex interaction between fluid mechanics
and electric fields. EHD may enable improved spray control and finer atomization so that fuel injection schemes can be inex-
pensively developed for the small combustion engine class. Moreover, EHD may provide efficient enhancements to hydro-
carbon fuel atomization that could benefit a much broader range of engines and even other, non-combustion
applications, such as pharmaceutical coating and micro- or nano-thin-film deposition [1].

EHD is a subject that has been explored since Lord Rayleigh revealed the competing forces and resulting dynamics of a
liquid drop that is radially stressed by an applied electric field in his 1882 paper [2]. Many researchers have explored
EHD in multiphase systems [3–11]. A number of numerical studies have been conducted, however no reports of three-
dimensional direct numerical simulations (DNS) modeling of primary atomization mechanisms for multiphase, multiphysics
electrohydrodynamics have been found in the literature. Idealizations and simplifications have been employed, along with a
variety of methodologies such as Lagrangian particle tracking [12,13], 2D Lattice Boltzmann methods [14], and axisymmetric
Galerkin finite element methods [15]. The ‘‘leaky dielectric model” [7,16] has been employed in simulations [17].

Recent numerical work by Tomar and co-workers [18] implemented a weighted harmonic mean (WHM) interpolation
scheme to smoothen the electric properties at the interface, a coupled level set and volume-of-fluid (CLSVOF) [19] algorithm
for tracking the phase interface, and the continuum surface force (CSF) [20] method for the electric surface forces. In other
recent work, Guildenbecher [21] reported no observed effects of electric charge on secondary atomization for either dielectric
or conducting drops. He recommended using DNS to fully elucidate the role of electric stresses in primary atomization and
subsequently to help develop predictive models for EHD atomization.
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Considering the challenges and expense of experiments, high-fidelity numerical simulations should be able to provide
some assistance in answering questions about the fundamentals and dynamics of EHD atomization. Its scientific promise
notwithstanding, numerical simulations of realistic liquid break-up are quite challenging due to the computational expense
involved. This necessitates the use of large, parallel computational resources. The long-term goals of this research effort are
to understand the dynamics of EHD atomization, simulate classic experiments such as the uncharged and charged liquid ker-
osene jets in Fig. 1, and to pave the way for robust modeling of EHD sprays using advanced numerical methods.

In this paper, we present the development of a sharp numerical scheme for multiphase electrohydrodynamic (EHD) flows
using a high electric Reynolds number assumption. The electric potential Poisson equation contains EHD interface boundary
conditions, which are implemented using the ghost fluid method (GFM). The GFM is also used to solve the pressure Poisson
equation. The methods detailed here are integrated within the high order fully conservative finite difference Navier–Stokes
solver of the NGA code [22] which includes state-of-the-art interface transport techniques [23,24]. Test cases with exact or
approximate analytic solutions are used to assess the robustness and accuracy of the EHD modules within NGA. Finally, a
charged liquid kerosene jet in quiescent air is simulated and qualitatively compared to experimental results.

This paper is organized with the proceeding section presenting the analytic models and governing equations. Section 3
describes the methodology for solving the electric potential Poisson equation, and Section 4 details an efficient scheme
for computing the interface boundary conditions. Section 5 describes the implementation of the Coulomb force, and Section
6 presents numerical tests used to validate the methodology. Section 7 details a three-dimensional simulation of an electri-
cally charged kerosene jet, and a final section addresses conclusions and future work.

2. Mathematical model

In EHD flows, inertial, viscous, capillary, and electric forces are relevant and contribute to the behavior of the system. The
hydrodynamic and electrostatic governing equations are summarized in this section.

Conservation of mass and momentum for a variable density, low Mach number flow are given as
@q
@s
þr � ðquÞ ¼ 0; ð1Þ

@qu
@s
þr � qu� uð Þ ¼ �rpþr � ðrf þ reÞ þ qg; ð2Þ
Fig. 1. Comparison of uncharged and charged kerosene jets, used with permission [12].
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where u is the velocity field, p is the hydrodynamic pressure, q is the mass density, and g is gravitational acceleration, and s
is time. The viscous stress tensor, rf, is given by
rf ¼ l ruþruT
� �

� 2
3
lr � uI; ð3Þ
with I the identity tensor and l is the dynamic viscosity. The Maxwell stress tensor, re, and the corresponding electric body
force, fe, are described by
re ¼ �EE � �
2

E � E 1� q
�
@�
@q

� �
I; ð4Þ

f e ¼ r � re ¼ qE � 1
2

E2r�þr 1
2
q
@�
@q

E2
� �

; ð5Þ
where � is the electric permittivity, q is a volumetric electric charge density, and E is the electric field vector. The three terms
of fe represent the Coulomb force, the dielectric force, and the electrostrictive force, respectively. The electric displacement
vector, D, is assumed to vary linearly with the electric field vector for the incompressible and homogeneous flows considered
here, as
D ¼ �E: ð6Þ
The electric field vector is irrotational, a consequence of the electrostatic assumption, hence it can be expressed as the gra-
dient of the scalar electric potential, /, as
E ¼ �r/: ð7Þ
The Gauss law can be employed for a dielectric material to relate the electric displacement vector to the volumetric charge,
as
r � D ¼ r � �E ¼ �r � ð�r/Þ ¼ q: ð8Þ
Henceforth, Eq. (8) will be referred to as the electric potential Poisson equation. The electric charge conservation equation is
described by
@q
@s
þr � J ¼ 0; ð9Þ
where J is the current density, which can be expressed as
J ¼ liqE � Dirqþ qu; ð10Þ
where Di is the molecular diffusion coefficient and li is the ionic mobility coefficient.
While the velocity and tangential electric field components are continuous across the interface, the mass density, viscos-

ity, and electric displacement vector experience jumps, described by
½u � n�C ¼ 0; ð11Þ
½u � ti�C ¼ 0; for i ¼ 1;2; ð12Þ
½q�C ¼ ql � qg ; ð13Þ
½l�C ¼ ll � lg ; ð14Þ
½��C ¼ �l � �g ; ð15Þ
½D�C ¼ n � ½�E�C ¼ qs; ð16Þ
n� ½E�C ¼ 0; ð17Þ
where [(�)]C represents the jump of ‘‘(�)” across the interface, C, and for example, [D]C represents the jump of the electric
displacement vector across the interface, n and t represent the normal and tangential unit vectors at the interface, super-
scripts l and g represent quantities in the liquid and gas phases, respectively, and qs the surface charge. A direct consequence
of the irrotational jump condition, Eq. (17), ensures that the tangential components of the electric field, and therefore the
electric potential, /, are continuous,
½Et1 �C ¼ 0; ½Et2 �C ¼ 0; and ð18Þ
½/�C ¼ 0: ð19Þ
The pressure interface jump condition includes contributions from viscous, electric and surface tension forces, and is repre-
sented as
�½p�C þ ½nT � ðre þ rf Þ � n�C ¼ �cj; ð20Þ
which can be simplified as
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½p�C � 2½l�CnT � ru � n� cj ¼ 1
2
�E2

n

� �
C

� 1
2
�E2

ti

� �
C

; ð21Þ
where [p]C is the pressure jump across the interface, c the surface tension coefficient, and j the local interface curvature. The
tangential shear stress balance yields
½nT � ðre þ rf Þ � ti�C ¼ 0: ð22Þ
The conservation of charge at the interface is described as [7,16,25],
J � n½ �C þrs � Js ¼ ðn � uÞ½q�C �
@qs

@t
� us � rsqs þ qsn � ðn � rÞu; ð23Þ
where Js is the surface current density, us the interface surface velocity, and rs represents a surface gradient operator.

2.1. Modeling strategy for high electric Reynolds number

Rigorous modeling of the governing equations and interface boundary conditions presents many challenges, one of which
is the accumulation of bulk volumetric charge as a surface charge in a thin electric boundary layer much smaller than the
hydrodynamic boundary layer. Furthermore, the surface charge interface boundary condition, Eq. (23), is difficult to imple-
ment and its complexity is compounded by temporally and spatially varying accumulation of surface charge. Considering
these challenges, it seems logical to model the disposition of the electric charge as belonging to one of two limiting regimes:
either a bulk, volumetric charge or a fully relaxed surface charge.

The classic leaky dielectric model, first proposed by Taylor [26] and subsequently summarized in [7,16], is frequently used
to describe the effects of electric charge in dielectric liquids. The model contends that no real dielectric is perfect, and con-
duction processes cannot be completely ignored. One fundamental assumption of this model is that electric charge, however
introduced into a dielectric liquid, has sufficient time to fully relax from a bulk volumetric charge to a surface charge. In low-
inertia systems dominated by viscosity, surface tension or both, this assumption is relevant. For inertial flows, however, the
advection time scale is often the governing time scale, which in some cases can be much shorter than the space charge relax-
ation time scale. For a situation of unipolar space charge injected into a dielectric liquid, charge relaxation will occur as the
result of mutual repulsion of like charges rather than through pure conduction processes [27]. The space charge relaxation
time, ssc, represents the typical time for volumetric charge, q, to decay [28,29], and the advection time scale, sf, is a charac-
teristic time for a fluid element to move a distance defined by a relevant length scale, lo. The two time scales are described by
ssc ¼
�

liq
; ð24Þ

sf ¼
lo

u
: ð25Þ
The electric Reynolds number, Ree, is defined here as the ratio of charge relaxation and advection times,
Ree ¼
ssc

sf
: ð26Þ
For illustration, consider a liquid dielectric hydrocarbon fuel into which unipolar electric charge is injected via electro-
chemical processes. Numerous experiments have been conducted using this ‘‘direct charge injection” technique, most nota-
bly those performed by Lehr and Hiller [30] and Yule and co-workers [9,31–33]. Using properties for liquid kerosene and
experimental parameters provided in [9] for nozzle diameter, do = 500 lm, injection charge, q = 0.5 C/m3, Reynolds number,
Re = 1900, and electric permittivity, � = je�o = 1.95e�11 F/m, a time scale comparison using lo = do yields
ssc � 0:039 s;
sf � 0:00005 s;
Ree � 780;
where typical values of ion mobility, li = 1e�9 m2/V s, dielectric constant, je = 2.2, and vacuum permittivity,
�o = 8.854e�12 F/m, are used. The smallest characteristic electric Reynolds number would be one based on the full length
of the computational domain, Re�e ¼ �u=liql�o. For a domain length of l�o ¼ 20do, the corresponding electric Reynolds number
would be Re�e � 40, which suggests that a fluid particle would need to move more than 40 times the length of this compu-
tational domain before charge is fully relaxed to the surface. Given this time scale analysis, a reasonable approximation for
the disposition of the electric charge is one in which the charge is ‘‘bound” and moves with the fluid velocity. In this paper,
we assume constant volumetric charge and use this assumption as the foundation for the model described in the remainder
of this section.

The assumption of constant volumetric space charge implies negligible surface charge. This assumption, along with
incompressibility and material homogeneity within a phase, permit some simplifications of the governing equations and
interface boundary conditions. Considering the electric body force, fe, given in Eq. (5), the electrostriction term can be ne-
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glected [27,29]. The dielectric force appears in the pressure jump in Eq. (21), and subsequently the force density, Eq. (5), re-
duces to the Coulomb force in the bulk
Fig. 2.
depict T
f e ¼ qE: ð27Þ
Constant volumetric charge reduces the charge conservation equation to a solenoidal current density, described by
r � J ¼ 0; ð28Þ
and also eliminates the diffusion term in the current density, Eq. (10). For inertial flows of dielectric liquids, the ionic mobil-
ity term in Eq. (10) can be neglected for electric field strengths less than 107 V/m, and therefore the current density can be
described as charge convecting with the fluid velocity,
J ¼ qu: ð29Þ
Negligible surface charge implies that the normal component of the electric displacement vector is continuous. However, the
jump in electric permittivity across the phase interface imposes a discontinuity in the normal component of the electric field,
and Eq. (16) becomes
n � ½D�C ¼ n � ½�E�C ¼ ½�En�C ¼ 0: ð30Þ
With negligible surface charge, constant permittivity within each phase, and negligible electrostriction, the jump in the tan-
gential electric stress is zero, and hence Eq. (22) reduces to
nT � ðrf Þ � ti
� 	

C ¼ 0: ð31Þ
In the proceeding sections, we implement this model, employing the ghost fluid method to solve the electric potential Pois-
son equation and to develop a numerically sharp technique for computing the EHD pressure jump.

3. Ghost fluid method implementation for electric potential Poisson equation

Different strategies have been developed to handle the large density ratio and the surface tension force in a flow solver.
The continuum surface force approach (CSF) [20] spreads out both the density jump and the surface tension force over a few
cells surrounding the interface in order to facilitate the numerical discretization. Consequently, this approach tends to mis-
represent the smallest front structures. In the context of finite differences, the ghost fluid method (GFM) [34] provides a very
attractive way of handling discontinuities by using generalized Taylor series expansions that directly include these discon-
tinuities, as depicted in Fig. 2. Because GFM explicitly deals with the electric permittivity jump in the electric potential Pois-
son equation, the resulting discretization is not affected by the permittivity ratio. The GFM is also used to handle the jump in
the density ratio in the pressure Poisson equation. In this equation, the surface tension force is included directly in the form
of a pressure jump, providing a sharp numerical treatment of this singular term. Given its appealing attributes, the GFM is
chosen as the method to implement the electric potential Poisson equation and the EHD interface jump conditions.

An initial step in implementing an EHD module is to solve for the electric potential, /, which is an additional variable
coefficient Poisson equation given in Eq. (8). In previous work, a generalized Taylor series expansion was employed to pro-
vide a sharp implementation for the pressure Laplacian across an interface jump [22,23,35]. Using a similar approach, a sharp
formulation is presented for the gradient and Laplacian of the electric potential, in either the gas or the liquid phase.

Using the simplification of no surface charge from Eq. (30), a convenient expression for the jump in the normal compo-
nent of the electric field can be derived as
½�En�C ¼ ½��CEg
n þ �l½En�C ¼ 0: ð32Þ
Illustration of ghost fluid method for a variable, such as the electric potential, /, which displays a discontinuity in its gradient, @/
@x, at xC. Dashed lines

aylor series expansions across the interface and dotted line represents the interface location [35].
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Hence,
½En�C ¼
�½��C
�l

Eg
n ¼
ð�g � �lÞ
�l

Eg
n ¼ ð1=�r � 1ÞEg

n; ð33Þ
or equivalently,
½En�C ¼
�½��C
�g

El
n ¼
ð�g � �lÞ
�g

El
n ¼ ð1� �rÞEl

n; ð34Þ
where �r is the ratio of electric permittivities. In addition, we still have continuous tangential electric field components,
½Et1 �C ¼ 0 and ½Et2 �C ¼ 0:
The jump in the electric displacement vector can be written as the product of the scalar permittivity and the electric field
vector, [D]C = [�E]C, using the previously stated assumption of electrically linear behavior. Re-arranging the jump algebra-
ically, we can describe the product of permittivity and the electric field vector as
�E½ �C ¼ �l½E�C þ Eg ½��C; ð35Þ
and with the continuous tangential components, the first term on the right-hand side reduces, yielding
½�E�C ¼ �l½En�nþ ½��CEg : ð36Þ
Expressing the jump in vector form for its Cartesian dimensions gives
½�E�C ¼ ½�ðExex þ Eyey þ EzezÞ�C;
¼ ½�Ex�Cex þ ½�Ey�Cey þ ½�Ez�Cez:

ð37Þ
Incorporating Eq. (36), the Cartesian components can be expressed as,
½�Ex�C ¼ �l½En�ðn � exÞ þ ½��CEg
x ; ð38Þ

½�Ey�C ¼ �l½En�ðn � eyÞ þ ½��CEg
y; ð39Þ

½�Ez�C ¼ �l½En�ðn � ezÞ þ ½��CEg
z ; ð40Þ
and substituting Eq. (33) yields the following for each Cartesian component,
½�Ex�C ¼ ½��CðE
g
x � Eg

nnxÞ; ð41Þ
½�Ey�C ¼ ½��CðE

g
y � Eg

nnyÞ; ð42Þ
½�Ez�C ¼ ½��CðE

g
z � Eg

nnzÞ; ð43Þ
where nx = n�ex, ny = n�ey, and nz = n�ez, represent the Cartesian components of the interface normal vector.
Eqs. (41)–(43) are challenging to implement within a staggered mesh numerical scheme. The electric potential, /, level

set, G, and interface normals are known at the cell centers, while vector quantities are computed at the faces. Direct com-
putation of the normal electric field component, En, would require a very large stencil, thereby greatly increasing the cost
of solving the electric potential Poisson equation.

Following the methodology proposed by Liu et al. [36], we employ a simplification that enables an efficient, dimension-
by-dimension application of the jump, described by
½�E�C � ½�En�Cn: ð44Þ
As suggested by Liu et al. [36], this assumption accurately and efficiently captures the jump in the normal component, but
leads to the generally false identity ½�Eti

�C ¼ 0. However, we know ½�Eti
�C ¼ ½��CEti

since ½Eti
�C ¼ 0. For cases of interest in this

work, the normal component of the electric field vector is expected to be significantly larger than its tangential component,
and therefore the error in the tangential jump is likely to remain small. The simplification described by Eq. (44) is employed
only for the electric potential in order to enable an efficient solution for this variable coefficient Poisson equation.

The Cartesian components of the jump were specified in Eq. (37). Assuming the components are uniquely zero and fol-
lowing the methodology in Eqs. (32)–(34) yields,
½Ex�C ¼
�½��C
�l

Eg
x ¼
ð�g � �lÞ
�l

Eg
x ¼ ð1=�r � 1ÞEg

x ; ð45Þ

½Ex�C ¼
�½��C
�g

El
x ¼
ð�g � �lÞ
�g

El
x ¼ ð1� �rÞEl

x: ð46Þ
Summarizing for all three dimensions,
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½Ex�C � ð1=�r � 1ÞEg
x ¼ ð1� �rÞEl

x; ð47Þ
½Ey�C � ð1=�r � 1ÞEg

y ¼ ð1� �rÞEl
y; ð48Þ

½Ez�C � ð1=�r � 1ÞEg
z ¼ ð1� �rÞEl

z: ð49Þ
Eqs. (47)–(49) represent an efficient set of dimension-by-dimension interface jumps. To discretize these equations, consider
a Taylor series expansion of / at stencil points xi and xi+1, as
½/�i ¼ ½/�C þ ðxi � xCÞ½r/�C þ Oððxi � xCÞ2Þ; ð50Þ
½/�iþ1 ¼ ½/�C þ ðxiþ1 � xCÞ½r/�C þ Oððxiþ1 � xCÞ2Þ: ð51Þ
The electric potential is continuous at the interface, guaranteed by Eq. (19). We employ the jump in the gradient, [r/]C, to
provide a sharp representation for the jump in / between neighboring stencil points,
½/�i � ðxi � xCÞ½r/�C; ð52Þ
½/�iþ1 � ðxiþ1 � xCÞ½r/�C: ð53Þ
Note, the jump in the electric potential gradient is equivalent to the jump in the electric field vector, [r/]C = �[E]C. Applying
the Cartesian dimension jump in Eqs. (47)–(49) yields
½rx/�C ¼ �½Ex�C ¼
�½��CEg

x jC
�l

; ð54Þ
where,
Eg
x jC � Eg

x jiþ1=2 ¼
/g

iþ1 � /g
i

Dx
¼ /l

iþ1 � /g
i

Dx
�
½/�iþ1

Dx
; ð55Þ
as depicted in Fig. 2, and therefore
½/�iþ1 ¼ �ðxiþ1 � xCÞ
½��C
�l

/l
iþ1 � /g

i

Dx
�
½/�iþ1

Dx

 !
: ð56Þ
The efficient formulation described in Eqs. (54)–(56) assumes that the jump in the gradient of / is constant and can be
moved to a known stencil point. This shift in position may induce an error, which we expect to remain small for a slowly
varying interface.

Defining a gas fraction index, h = (xC � xi)/Dx, and modified permittivity, �w = �lh + �g(1 � h), yields
½/�iþ1 ¼ 1� �l

�H

� �
ð/l

iþ1 � /g
i Þ: ð57Þ
Employing the modified permittivity yields a discretized expression for the gradient of the potential, given by
�g
@/
@x






g

iþ1=2
¼ �g

/l
iþ1 � /g

i

Dx
� ½/�iþ1

Dx

 !
¼ /l

iþ1 � /g
i

Dx
� 1� �l

�H

� �
/l

iþ1 � /g
i

Dx

 ! !
¼ �g�l

�H

/l
iþ1 � /g

i

Dx

 !
: ð58Þ
Simplifying provides a direct expression for the gradient of the electric potential in the gas,
@/
@x






g

iþ1=2
¼ �l

�H

/l
iþ1 � /g

i

Dx

 !
: ð59Þ
Recognizing that in the liquid, the gas fraction becomes h = (xi+1 � xC)/Dx provides a similar expression for the gradient in the
liquid, described by
@/
@x






l

iþ1=2
¼ �g

�H

/g
iþ1 � /l

i

Dx

 !
: ð60Þ
Extending this methodology yields a discretization for the Laplacian of the electric potential, written in either the liquid or
the gas phase as
@

@x
�l
@/
@x

� �




l

iþ1=2
¼ �l�g

�H

/g
iþ1 � /l

i

Dx2

 !
� �l

/l
i � /l

i�1

Dx2

 !
; ð61Þ

@

@x
�g
@/
@x

� �




g

iþ1=2
¼ �l�g

�H

/l
iþ1 � /g

i

Dx2

 !
� �g

/g
i � /g

i�1

Dx2

� �
: ð62Þ
Eqs. (59)–(62) are implemented within the EHD module of NGA to provide a robust, efficient and accurate solution for the
electric potential.
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4. Sharp numerical method for EHD pressure jump

A second step to developing an EHD module is to implement a sharp, numerically accurate scheme for the EHD interface
jump conditions in Eq. (21). Even with perfect dielectrics, EHD effects can be noticed due to the strong coupling through the
jump conditions at the interface. The right-hand side of Eq. (21) shows how the electric stresses contribute to the pressure
jump across the interface through the normal and tangential components of the electric field. In this section, we derive a
mathematical formulation for the pressure jump that includes the EHD stresses, and then use the GFM to develop an efficient
numerical scheme to compute the normal and tangential electric field components at the phase interface.

Considering the right-hand side of Eq. (21), we expand the EHD contributions to the overall pressure jump. Employing
algebraic manipulation similar to that in Section 3 yields
1
2
�E2

n

� �
C

¼ �l½En�C El
n þ Eg

n

� �
þ ðEg

nÞ
2½��C: ð63Þ
Combining Eqs. (33) and (63) yields
1
2
�E2

n

� �
C

¼ �½��CðE
g
nEl

nÞ: ð64Þ
Recognizing that the jump in the square of the tangential component, ½E2
ti
�C, is identically zero provides a convenient simpli-

fication for the jump in the tangential field terms. Superscripts g and l are omitted since they are irrelevant for the contin-
uous tangential components, and therefore
�E2
ti

h i
C
¼ E2

ti
½��C: ð65Þ
Combining Eqs. (64) and (65) to form the right-hand side of Eq. (21) yields
1
2
�E2

n

� �
C

� 1
2
�E2

t1

� �
C

� 1
2
�E2

t2

� �
C

¼ �½��C
2

Eg
nEl

n þ ðEt1 Þ
2 þ ðEt2 Þ

2
� �

: ð66Þ
The quantity Eg
nEl

n is challenging to evaluate. This product can be re-cast in terms of either the gas or liquid side, as
Eg
nEl

n ¼
ðEg

nÞ
2 1
�r
ðgas sideÞ;

ðEl
nÞ

2�r ðliquid sideÞ:

(
ð67Þ
Combining Eqs. (66) and (67) and Eq. (21) yields a final form of the pressure jump, which accounts for EHD, viscous, and
surface tension stresses,
½p�C � 2½l�CnT � ru � n� cj ¼
ð�g��lÞ

2 ðEg
nÞ

2 1
�r
þ ðEt1 Þ

2 þ ðEt2 Þ
2

� �
ðgasÞ;

ð�g��lÞ
2 ðEl

nÞ
2�r þ ðEt1 Þ

2 þ ðEt2 Þ
2

� �
ðliquidÞ:

8><
>: ð68Þ
To implement the pressure jump, [p]C, in Eq. (68), the normal and tangential components of the electric field are required.
The interface normal vectors are known at the cell centers and the Cartesian components of the electric field are known at
the cell faces, presenting a challenge for direct computation of the normal and tangential electric field components. There-
fore, it is necessary to interpolate the Cartesian components of the electric field to the cell center across the phase interface,
re-construct a cell-centered electric field vector, and subsequently partition the vector into normal and tangential compo-
nents. The normal component of the electric field experiences a jump across the interface, and the GFM is employed to han-
dle this discontinuity.

The jump in the electric field can be written in vector form,
½E�C ¼ ½ðEnnþ Et1 t1 þ Et2 t2Þ�C;
¼ ½En�Cnþ ½Et1 �Ct1 þ ½Et2 �Ct2: ð69Þ
Incorporating the continuous tangential electric field jump condition given in Eq. (18) simplifies Eq. (69) to
½E�C ¼ ½En�Cn: ð70Þ
The Cartesian components of the jump can be derived,
½Ex�C ¼ ½E�C � ex ¼ ½En�Cn � ex ¼ ½En�nx; ð71Þ
½Ey�C ¼ ½En�ny; ð72Þ
½Ez�C ¼ ½En�nz: ð73Þ
Combining with Eqs. (33) and (34) gives
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½Ex�C ¼ ð1=�r � 1ÞEg
nnx ¼ ð1� �rÞEl

nnx; ð74Þ
½Ey�C ¼ ð1=�r � 1ÞEg

nny ¼ ð1� �rÞEl
nny; ð75Þ

½Ez�C ¼ ð1=�r � 1ÞEg
nnz ¼ ð1� �rÞEl

nnz: ð76Þ
Eqs. (74)–(76) are used to interpolate the electric field components to the cell center.
For the stencil shown in Fig. 3, the interpolation scheme depends on whether the cell center is in the liquid or the gas

phase. Since the electric field vector components are computed at the cell faces, it is also necessary to determine the phase
at the cell faces. To determine whether the cell face is in the liquid or gas, the value of the level set function is interpolated to
the cell face between neighboring cell centers.

Beginning with general expressions for a cell center point in the liquid or the gas phase, a second-order accurate inter-
polation for the electric field with a first-order approximation for the jump can be written as
Exjliþ1=2 ¼
El

x;i þ El
x;iþ1

2
¼

El
x;i þ Eg

x;iþ1

2
þ ½Ex�C

2
; ð77Þ

Exjgiþ1=2 ¼
Eg

x;i þ Eg
x;iþ1

2
¼

Eg
x;i þ El

x;iþ1

2
� ½Ex�C

2
: ð78Þ
Since the interface normal is known at the cell center, we use the formulation in Eqs. (71)–(73) to accurately represent each
Cartesian component of the jump. Combining with Eqs. (77) and (78) yields a dimension by dimension expression for the
electric field jump at the cell center. Written only in the x-component for brevity, but in both the liquid and gas phase, gives
El
x

h i
C;ðiþ1=2Þ

¼ ð1� �rÞðEx;iþ1=2nx þ Ey;jþ1=2ny þ Ez;kþ1=2nzÞlnx; ð79Þ

Eg
x

� 	
C;ðiþ1=2Þ ¼

1
�r
� 1

� �
ðEx;iþ1=2nx þ Ey;jþ1=2ny þ Ez;kþ1=2nzÞgnx: ð80Þ
For simplicity, we introduce a coefficient, Cl;g
x;y;z, to represent the jump conditions for one or two jumps within a cell for each

Cartesian dimension. With superscripts l and g representing the liquid and gas phases at the cell center, respectively, the
coefficient is described as
Cl;g
x;y;z ¼

0 if no jump;
ð1� �rÞ single jump; liquid at cell center;
ð1� 1=�rÞ single jump; gas at cell center;
2ð1� �rÞ double jump; liquid at cell center;
2ð1� 1=�rÞ double jump; gas at cell center:

8>>>>>><
>>>>>>:

ð81Þ
Re-writing Eqs. (79) and (80), and accounting for the sign difference (+/�) of Eqs. (77) and (78) yields
Exjliþ1=2 ¼
El

x;i þ Eg
x;iþ1

2
þ

Cl
xðExjliþ1=2nx þ Eyjljþ1=2ny þ Ezjlkþ1=2nzÞnx

2
; ð82Þ

Exjgiþ1=2 ¼
El

x;i þ Eg
x;iþ1

2
þ

Cg
xðExjgiþ1=2nx þ Eyjgjþ1=2ny þ Ezjgkþ1=2nzÞnx

2
: ð83Þ
This methodology is extended in three dimensions to yield a representation for the electric field interpolated to the cell cen-
ter. The cell-centered electric field is partitioned into normal and tangential components, which are used to compute the
Fig. 3. x-Stencil shows interface location; gas fraction, h, less than 50%.
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right-hand side of the pressure jump in Eq. (21) at the cell center. The pressure jump is linearly interpolated to the interface
and then used to solve the pressure Poisson equation, which also employs the GFM [23,24].

5. Implementation of coulomb force

The Coulomb force, Eq. (27), is implemented as a face-centered source term in the Navier–Stokes equations. For each
Cartesian dimension, charge is computed at each cell face using a height function of the liquid volume fraction according
to Eq. (84), and then multiplied by the local face value of the electric field. The height function, kiþ1

2;j;k
, is defined by
kiþ1
2;j;k
¼

1 if Gi;j;k and Giþ1;j;k P 0;
0 if Gi;j;k and Giþ1;j;k < 0;

Gþi;j;kþGþiþ1;j;k
jGi;j;k jþjGiþ1;j;k j

otherwise;

8>><
>>: ð84Þ
where Gþi;j;k ¼maxðGi;j;k;0Þ, and Gi,j,k is the value of the level set function.

6. Validation and numerical results

Several canonical test cases were employed to validate the numerical solutions for the electric field: a one-dimensional
rectangle with a flat interface separating regions of two permittivities; a one-dimensional interface with constant charge
density; a charged droplet in an applied electric field accelerating to terminal velocity; a dielectric drop in a uniform electric
field; and a deforming dielectric spheroid stressed by an electric field.

All simulations performed in this work employ an in-house code named NGA, for which the numerical methods presented
here have been implemented in parallel using Message Passing Interface (MPI). NGA extends the family of high order fully
conservative finite difference schemes proposed by Morinishi and Vasilyev [37–39] to variable density low-Mach number
flows [22,35]. For all simulations in this work, second-order accurate versions of numerical schemes are employed as we ex-
pect accuracy to be limited by the GFM. NGA provides excellent accuracy and numerical robustness since its schemes dis-
cretely conserve mass, momentum, and kinetic energy away from the interface.

To fully capture liquid break-up, the NGA code employs state-of-the-art interface transport techniques, the first of which
is called Spectrally Refined Interface (SRI). The SRI method achieves local refinement in the form of quadrature points in each
grid cell that contains the phase-interface, so that the level set function can be reconstructed using high order polynomials,
thereby providing spectral accuracy [24]. Consequently, the local numerical errors in interface transport are reduced by the
combined effect of increased resolution and increased order of accuracy. To render this method computationally efficient,
the transport of the level set function is performed using a semi-Lagrangian technique, removing all constraints on the time
step size. Increased spatial resolution is achieved without noticeably reducing the time step size for level set transport,
which is a unique feature of this method. Level set based methods usually show good accuracy, but suffer from poor mass
conservation properties. By increasing the local resolution of the level set function, this new approach reduces numerical
errors, thereby limiting mass conservation errors [24,40,41].

A second interface transport technique, known as Accurate Conservative Level Set (ACLS) [23], is based on the conserva-
tive level set technique introduced in Olsson and Kreiss [42]. By employing a hyperbolic tangent level set function that is
transported and re-initialized using fully conservative numerical schemes, mass conservation issues that are known to affect
level set methods are greatly reduced. The overall robustness of the numerical approach is increased by computing the inter-
face normals from a signed distance function reconstructed from the hyperbolic tangent level set by a fast marching method
[23]. In this paper, the ACLS method is used for simulations of atomizing liquid jets in Section 7 to leverage its excellent mass
conservation qualities with the accompanying severe interface topology changes. For all other simulations, the SRI method is
used to capitalize on in its exceptional accuracy.

An efficient and robust Poisson solver is essential to the performance of an incompressible CFD code. It is typical for the
Poisson solver to account for 60% or more of the time spent per time step. Incorporating electrostatic effects adds an addi-
tional variable coefficient Poisson equation, thereby increasing the cost of an already expensive simulation. A recent study
evaluated several solvers, including Krylov-based solvers such as preconditioned conjugate gradient, deflated conjugate gra-
dient, and multigrid solvers such as algebraic, geometric, and matrix-based multigrid for problems similar to multiphase
flows [43]. The study concluded that the black-box multigrid (BBMG) solver of Dendy [44] is the most robust and efficient
method. Based on this evaluation, the choice was made to implement a BBMG solver in NGA. The implementation follows the
three-dimensional description introduced in Dendy [44]. The BBMG was introduced as a preconditioner to a conjugate gra-
dient solver. The full solver, referred to henceforth as PCG–BBMG, is ideally suited for efficiently solving the pressure and
electric potential Poisson equations. The PCG–BBMG solver was employed for all the test cases discussed in this paper.

6.1. Horizontal interface

The analytic solution for a horizontal, flat interface in an electric field was initially used to validate the Poisson solver for
the electric potential. As depicted in Fig. 4, the domain is rectangular of height L with Dirichlet boundary conditions for the
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potential, set to a constant value on top of the domain, /o, and zero at the bottom. The phase interface is located at H. Above
the interface, the permittivity is �l and below �g with �l > �g. The analytic solution for the electric fields above and below the
interface is
El ¼ /o

ðL� HÞ þ �l
�g

� �
H

and Eg ¼ /o

ðL�HÞ
ð�l=�g Þ þ H
� � : ð85Þ
Fig. 5 shows computational results for one representative test case where L = 1, �r = 5, /o = 100, and H = 0.4, with n = 60 mesh
points across the domain. The ghost fluid method provides a sharp and accurate solution for the electric field, and the error
for this test case is zero to machine accuracy. This result is expected because the electric field in this case is constant in each
phase, the jump in the electric field is both constant and normal to the interface, and therefore the implemented GFM
scheme is exact.

6.2. Horizontal interface with charge density

The analytic solution for a horizontal, flat interface with charge density is used to validate the PCG–BBMG Poisson solver
for a case with a non-zero right-hand side. The geometry is the same as in the preceding example discussed in Section 6.1
and Fig. 4. The upper region, representing the liquid, maintains a constant volumetric charge, qo. The analytic solution for the
liquid is governed by Poisson’s equation, while the charge-free gas region is governed by the Laplace equation, as
d2/l

dy2 ¼ qo and
d2/g

dy2 ¼ 0; ð86Þ
with the electric field in the liquid and gas described by
ElðyÞ ¼ qy
�l
� b and Eg ¼ �r

qH
�l
� b

� �
; ð87Þ
where
b ¼ /o þ ql2
=ð2�lÞ þ �rqH2=�l � qH2=ð2�rÞ

L� H þ �rH
: ð88Þ
The simulation parameters are the same as the uncharged horizontal interface test case. The value of qo is chosen such that
the ratio of charge to applied potential is unity. Fig. 6 shows computational results for this case, illustrating excellent agree-
ment of simulation and theory. Table 1 reports the normalized error in the y-direction electric field for this test case, showing
second-order convergence with mesh refinement.
Fig. 4. Schematic for the flat, horizontal interface case.
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Fig. 5. Distribution of normalized electric field normal to interface for horizontal interface test case. Symbols represent simulation, solid line represents
theory.
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Fig. 6. Distribution of normalized electric field for charged horizontal interface test case. Symbols represent simulation, solid line represents theory.
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6.3. Motion of a small charged droplet

A small point charge in a uniform electric field accelerates due to the Coulomb force, fe = qE. In an attempt to reproduce
this behavior, a small, spherical, charged droplet is placed in a uniform electric field. If the drop charge is small relative to the
applied field, the spherical drop will not modify the electric field significantly, while feeling the effect of the Coulomb force.
Provided that the Reynolds number is small enough, the droplet will also experience Stokes drag and will eventually reach a
terminal velocity. Although a simple case, the charged drop test case evaluates the accuracy of the Coulomb force, as well as
the interaction of the electric and viscous forces.

With the previous assumptions, the motion of the charged drop is governed by the ordinary differential equation
VlqEy � 6plgRo
dy
ds
¼ qlV l

d2y
ds2 ; ð89Þ
where Vl represents the liquid volume and Ro the drop radius. The corresponding terminal velocity, us, and time scale, s* are
given as
us ¼
VlqEy

6plgRo
and s� ¼ Ro

us
: ð90Þ
The relevant simulation parameters include the ratio of space charge to electric field strength, QE = qRo/�Eo, set to a value of
0.4, the viscosity ratio and density ratio to 10, the surface tension, c = 0.2, ratio of permittivities, �r = 1, and domain size of
10Ro � 20Ro. To limit temporal errors, the CFL is kept constant at 0.1. Fig. 7 shows the velocity of the drop over time as it
accelerates to terminal velocity for three levels of mesh refinement. Simulation results are compared to the theoretical solu-
tion for Eq. (89). The normalized error of simulation compared to theory at s/s* = 3 converges on mesh refinement: 11% at Ro/
h = 3; 2.2% at Ro/h = 6; and 0.4% at Ro/h = 9, where Ro/h represents the number of grid cells across the drop radius, thereby
demonstrating good convergence and excellent accuracy even with coarse resolution. The drop remains spherical through-
out the simulation.



Table 1
Normalized error in y-direction electric field for a horizontal interface with charge density.

Mesh err Ey Order

50 1.1e�5 –
100 2.7e�6 2.02
200 6.8e�7 1.98

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5  1  1.5  2  2.5  3

u/
u τ

τ/τ∗

Fig. 7. Simulation of charged drop accelerating to terminal velocity. Ro/h = 3 (circles), Ro/h = 6 (squares), Ro/h = 9 (triangles) compared to theory (line).
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6.4. Dielectric drop in a uniform electric field

For a subsequent test case, we demonstrate a three-dimensional dielectric sphere placed in a uniform electric field. The
drop is ideally suited to assess the accuracy and robustness of the EHD module. Spherical shapes are commonly observed in
atomization processes and represent a canonical geometry for fuel injection applications. Additionally, the electric potential
at the interface decays with r�2 and the electric field experiences large jumps proportional to the relative permittivity, �r.
Since we explicitly address the jump conditions with the GFM approach, we expect this approach to accurately capture
the physical phenomena with only a few grid points across the drop radius.

The analytic solution is provided in several references [45,46] and has been demonstrated in other work as a represen-
tative test case to validate numerical methods [18,17]. In this case we compare the numerical simulation result of the pres-
sure in a spherical drop with the analytic prediction. The geometry is shown in Fig. 8. The electric field, Eo, is applied in the y-
direction far away from the sphere. Since this case assumes a perfect dielectric, the environment is free of charge, and there-
fore the governing equation is Laplace’s equation with appropriate boundary conditions. Superscripts l and g represent re-
gions inside and outside the drop, respectively, and specifically /l is the potential inside the drop. The permittivities are
known with �l > �g and therefore the ratio of permittivities �r > 1. The analytic solutions for the electric potential and mag-
nitude of the electric field components are
/lðr; hÞ ¼ Eor
�3
�r þ 2

� �
sin h; ð91Þ

/gðr; hÞ ¼ �Eor sin hþ �� 1
�þ 2

� �
Eo

R3

r2 sin h; ð92Þ

El
t;r¼Ro

¼ Eg
t;r¼Ro

¼ 3Eo

�r þ 2

� �
cos h; ð93Þ

El
n;r¼Ro

¼ 3Eo

�r þ 2

� �
sin h; and ð94Þ

Eg
n;r¼Ro

¼ �r
3Eo

�r þ 2

� �
sin h: ð95Þ
The pressure jump across the drop is given by
½p�C ¼
2c
R
þ 1

2
3Eo

�r þ 1

� �2

�lð1� �rÞ sin2 hþ �gð1� �rÞ cos2 h
h i

: ð96Þ
A simulation is conducted with the electric Bond number, NE ¼ �E2
oRo=c ¼ 0:33; �r ¼ 10, density and viscosity ratios set to

unity, drop radius Ro = 0.1, and surface tension, c = 0.32 for various levels of mesh refinement on a domain of 10Ro � 20Ro.
Results for the convergence of the y-component of the electric field at two circumferential locations are reported in Table



Fig. 8. Schematic for dielectric cylinder in a uniform electric field test case.
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2. The electric field at the cell center is very accurate at the pole and the equator, points where the field is exclusively defined
by either the normal or the tangential component. At both points, the electric field shows reasonable convergence, with the
error decaying between first- and second-order with mesh refinement. Table 3 reports the convergence of the electric po-
tential at all grid points in the neighborhood of the interface, which is defined by a sign change in the level set function com-
pared to a neighboring cell in any direction. The electric potential shows limited convergence, remaining below first-order
accuracy. These results are expected, since, as mentioned in Section 3, the numerical scheme is true to the normal jump in
the electric displacement vector, [�En]C, but smears the tangential jump, ½�Eti

�C. Similar observations and rates of conver-
gence were reported by Liu et al. [36]. It should also be noted that the choice of the GFM methodology represents an ex-
change of convergence for accuracy. In modeling multiphase and atomization processes, with characteristically small
structures, numerical accuracy is expected to be the more important property.

Fig. 9 compares the simulation results to the analytic prediction of Eq. (96) for the pressure jump at the surface of the
drop. The pressure jump is obtained across the sharp interface after one time step, prior to any deformation, and computed
results show reasonable agreement with theory. At the equator, h = 0�, the electric field is tangential to the interface, and
Fig. 9 shows reduced accuracy at this point, which might be related to tangential smearing. Table 4 shows the accuracy
of the pressure jump at the equator, h = 0�, which is the point of the maximum pressure jump. The GFM scheme shows
improvements in the accuracy of the pressure jump even with coarse resolution compared to previous work, such as the re-
sults reported for the same problem by Tomar et al. [18].
6.5. Deforming spheroidal drop

A number of researchers have explored the case of a suspended drop in a uniform electric field, including Taylor [10], Lan-
dau and Lifshitz [46], Cheng and Chaddock [47], Sozou [48], Baygents and Rivette [17,49], and Tomar et al. [18]. For this case,
the geometry and electric field alignment are identical to that for the dielectric drop in the preceding section, as shown in
Fig. 8. A spherical drop deforms when stressed by an externally applied electric field. A dielectric drop always deforms into a
prolate spheroid with the major axis aligned with the electric field.

The eccentricity, e, depolarization constant, n, and the electric field inside the spheroidal drop are given by Landau and
Lifshitz [46]
Table 2
Normalized error in y-direction electric field at the pole and equator of a dielectric drop.

Ro/h err, h = 0� Order err, h = 90� Order

5 2.3% – 2.0% –
10 0.8% 1.5 2.8% –
20 0.4% 1.0 0.7% 2.0



Table 3
Convergence for electric potential, /, at the interface of a dielectric drop.

Ro/h L2 Order L1 Order

5 0.0137 – 0.0777 –
10 0.0086 0.67 0.0748 0.06
20 0.0061 0.50 0.0551 0.44
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Fig. 9. Pressure jump at the interface of a dielectric cylinder. Simulation results for Ro/h = 4 (circles), Ro/h = 8 (filled triangles) compared to analytic solution
(line).

Table 4
Normalized error in pressure jump at equator (h = 0�) for a dielectric drop in uniform electric field.

Ro/h err [p]C (%) Order

NGA EHD 4 2.12 –
NGA EHD 8 1.03 1.09
NGA EHD 16 0.63 0.71
Tomar et al. [18] 20 4.49 –
Tomar et al. [18] 40 2.24 1.00
Tomar et al. [18] 80 1.15 0.96
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e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=b2

q
;

n ¼ ð1� e2Þ
ð2e3Þ ln

ð1þ eÞ
ð1� eÞ

� �
� 2e

� �
;

El ¼
Eo

ð1� nÞ þ n�r
:

ð97Þ
The force balance at the interface is
½p�C ¼ cjþ �g

2
�rðEl

nÞ
2 � ðEg

nÞ
2 þ E2

t ð1� �rÞ
� �

: ð98Þ
Considering two particular points, the equator (x = a) and the pole (y = b), the mean curvature, j, is defined by the two prin-
cipal radii of curvature, R1 and R2. For a prolate spheroid, these radii of curvature are given by
R1 ¼ a2b2 x2

a4 þ
y2

b4

� �3=2

and R2 ¼ a2 x2

a4 þ
y2

b4

� �1=2

: ð99Þ
The mean curvature at the end of the major axis (i.e. at the pole) and the curvature at the end of the minor axis (i.e. at the
equator) are given by Taylor [10] as



Table 5
Dielectric drop in uniform electric field. Comparison of simulation with Tomar et al. [18] for computed equilibrium pressure jump at different levels of mesh
refinement. Simulation L1 and L2 errors compared to theoretical predictions of Taylor [10], Landau and Lifshitz [46], and Cheng and Chaddock [47].

Ro/h L1 Dp Order L2 Dp Order

NGA EHD 3 0.029 – 0.09 –
NGA EHD 6 0.004 3.00 0.03 1.63
Tomar et al. [18] 4 0.145 – 0.22 –
Tomar et al. [18] 8 0.073 0.99 0.05 2.13
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R�1
1 þ R�1

2 ¼
2b
a2 at the pole;
a

b2 þ 1
a at the equator:

(

The electric stress at the pole is due exclusively to the normal component (En); similarly the electric stress at the equator is
due only to the tangential component (Et). The tangential component is continuous at the equator, that is Et ¼ El

t ¼ Eg
t at

h = 0�. Therefore the pressure jump at these locations can be expressed as
½p�C ¼
c 2b

a2

� �
þ �g

2 �rðEl
nÞ

2 � ðEg
nÞ

2
� �

at the pole;

c a
b2 þ 1

a

� �
þ �g

2 ElÞ2ð1� �r

� �
at the equator:

8><
>: ð100Þ
Simulation parameters are based upon Cheng and Chaddock’s stability analysis [47] and reported in Tomar et al. [18]:
NE = 0.49, minor axis ra = Ro/1.2, major axis rb = 1.44Ro, [p]C = 4.24 Pa, Ro = 0.1, c = 0.32, �r = 10.0, and density and viscosity
ratios of unity. The domain size used is 10Ro � 20Ro. To limit temporal errors, the CFL is kept constant at 0.1.
Fig. 10. Evolution of a deforming, dielectric drop stressed by a uniform electric field.



Table 6
Parameters for charged and uncharged liquid kerosene jet. Total mesh size is 50.3 million grid points;
do/h represents number of grid points across nozzle diameter.

Parameter Uncharged Charged Experiment

NE 0 70 19
Nei 0 1.25 0.09
q [C/m3] 0 4 0.5

Re 2000 4900
We 850 1700
do [lm] 250 500
do/h 36 n/a

ql/qg 652
ll/lg 56
�r 2.2
c [N/m] 0.0235
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Results for the equilibrium drop pressure using the NGA EHD module are compared to results from previous work in Ta-
ble 5. Equilibrium pressure is computed as a volume average of all cells with a liquid volume fraction of 0.99 or greater. The
NGA EHD module again shows good accuracy with few grid points. Fig. 10 depicts the evolution of an initially spherical
dielectric drop deforming into a prolate spheroid under the stress of an applied electric field, showing a smooth interface
and iso-contours of electric potential.
7. Simulation of electrically charged liquid kerosene jet

The validation cases presented heretofore are very limited in terms of complexity, covering flows governed by surface
tension and viscous effects. In order to assess the performance of the proposed approach and demonstrate its robustness,
Fig. 11. Comparison of uncharged and charged simulations of liquid kerosene jet.



Table 7
Proportion of time taken by each solver for each
time step for a charged liquid kerosene jet simula-
tion. The multiphase step in this simulation includes
the computational time for the electric potential
Poisson solver.

Multiphase including EHD 44%
Velocity 12%
Pressure 42%
Other 2%
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charged and uncharged liquid jets in quiescent air are simulated. A charge injection scheme is modeled, similar to that inves-
tigated by many researchers elsewhere [33,9,5,6,30,50]. The properties for the simulation are inspired by charge injection
experiments performed by Shrimpton and co-workers [9,31–33]. Parameters employed in both simulations are summarized
in Table 6, with the electro-inertial number defined by Nei ¼ q2d2

o=�qu2.
Both charged and uncharged simulations correspond to a fast liquid jet of kerosene injected from a circular port of diam-

eter do into quiescent air. For the charged simulation, we use a domain size of Lx = 21do, and Ly = Lz = 7do discretized on a
768 � 256 � 256 mesh. The boundary conditions implemented for this simulation are a Dirichlet condition at the upstream
x-face specifying bulk inflow, a convective outflow [51] on the downstream x-face, and zero electric potential on the y- and z-
faces. The interface is initialized as a liquid cylinder spanning the domain. In Fig. 11, the uncharged and charged simulations
are shown side-by-side for comparison. As expected, the uncharged simulation shows no disruption or break-up. Compared
to the charged experiment shown in Fig. 1, the charged simulation employs a higher level of volumetric charge, q, to enhance
liquid break-up in the absence of flow disturbances. In the charged simulation, many complex phenomena interact, resulting
in a liquid break-up into ligaments and drops. The presence of numerous ligaments oriented radially outward from the axial
centerline bears strong resemblance to the experiment photograph, Fig. 1. The radial orientation of liquid structures is attrib-
utable to Coulombic repulsion that arises from the space charge field, and is similar to that discussed elsewhere, for example
in [52]. Coulombic repulsion leads to an electric field oriented radially from the liquid core. The Coulomb force is, therefore, a
disruptive force that gives rise to the shape and orientation of the structures dislodged from the liquid core. The presence of
spherical drops is attributable to surface tension forces, which become more significant for smaller structures. A more de-
tailed assessment of liquid break-up mechanisms will be reported in a future publication.

The charged simulation requires 70% more computational time than an uncharged jet. The addition of the electric poten-
tial Poisson equation and a complex space charge electric field account for the increase in computational expense in the
charged simulation. Table 7 reports the proportion of time per time step required for each of the major computational com-
ponents for the charged simulation using the NGA EHD module.
8. Conclusions

In this paper, we present the development of a sharp numerical scheme for multiphase electrohydrodynamic (EHD) flows
using a high electric Reynolds number assumption. The electric potential Poisson equation contains EHD interface boundary
conditions, which are implemented using the ghost fluid method (GFM). The GFM is also used to solve the pressure Poisson
equation. The methods detailed here are integrated within the high order fully conservative finite difference Navier–Stokes
solver of the NGA code [22] which includes state-of-the-art interface transport techniques [23,24]. Test cases with exact or
approximate analytic solutions are used to assess the robustness and accuracy of the EHD modules within NGA. Finally, a
charged liquid kerosene jet in quiescent air is simulated and qualitatively compared to experimental results.

Previous work by Tomar et al. [18] implemented a weighted harmonic mean (WHM) interpolation scheme to smoothen
the electric properties at the interface, a coupled level set and volume-of-fluid (CLSVOF) algorithm for tracking the phase
interface, and the continuum surface force (CSF) method for the electric surface forces. We develop a new representation
for the interface jump conditions, employing a generalized Taylor series expansion to directly and accurately account for
the discontinuities across the interface. We show that the GFM can be extended to solve the electric potential Poisson equa-
tion. The GFM is also extended to the EHD jump conditions to accurately model the strong interfacial coupling. Compared to
a CSF-type approach for handling discontinuities, the application of GFM in the NGA code yields more accurate results with
fewer grid points. Several test cases validate the overall methodology and demonstrate the improvements in both accuracy
and efficiency compared with the current state-of-the-art for EHD modeling. The model is applied in direct numerical sim-
ulation of a charged and uncharged liquid Kerosene jet to demonstrate the robustness of the methods. The simulation results
are compared to classic experiments and suggest reasonable qualitative agreement.

To explore the dynamics of EHD and its role in primary atomization, fully three-dimensional DNS of atomizing EHD liquid
jets must be conducted. The complicated interplay between classical liquid disintegration mechanisms and electric disrup-
tion will require large-scale simulations to resolve. Several fundamental yet unanswered research questions will guide initial
simulations of EHD atomization, such as the roles that the electric Bond number, NE, and the electro-inertial number, Nei, play
in electrostatic-enhanced atomization for complex geometries and three-dimensional flows. The methodology proposed and



B.P. Van Poppel et al. / Journal of Computational Physics 229 (2010) 7977–7996 7995
validated in this paper establishes a point of departure for large-scale, high-fidelity DNS of EHD atomization. Results of a
detailed numerical study of electrostatic-aided atomization will serve as the focus of a future publication.
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